
Noname manuscript No.
(will be inserted by the editor)

On the Complexity of Rational Verification

Julian Gutierrez · Muhammad Najib ·
Giuseppe Perelli · Michael Wooldridge

Received: date / Accepted: date

Abstract Rational verification refers to the problem of checking which temporal
logic properties hold of a concurrent/multiagent system, under the assumption
that agents in the system choose strategies that form a game theoretic equilib-
rium. Rational verification can be understood as a counterpart to model checking
for multiagent systems, but while classical model checking can be done in poly-
nomial time for some temporal logic specification languages such as CTL, and
polynomial space with LTL specifications, rational verification is much harder: the
key decision problems for rational verification are 2EXPTIME-complete with LTL
specifications, even when using explicit-state system representations. Against this
background, our contributions in this paper are threefold. First, we show that the
complexity of rational verification can be greatly reduced by restricting specifica-
tions to GR(1), a fragment of LTL that can represent a broad and practically useful
class of response properties of reactive systems. In particular, we show that for a
number of relevant settings, rational verification can be done in polynomial space
and even in polynomial time. Second, we provide improved complexity results for
rational verification when considering players’ goals given by mean-payoff utility
functions—arguably the most widely used approach for quantitative objectives in
concurrent and multiagent systems. Finally, we consider the problem of comput-
ing outcomes that satisfy social welfare constraints. To this end, we consider both
utilitarian and egalitarian social welfare and show that computing such outcomes
is either PSPACE-complete or NP-complete.
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1 Introduction

The formal verification of computer systems has been a major research area in
computer science for the past 60 years. Verification is the problem of checking
program correctness: the key decision problem relating to verification is that of
establishing whether or not a given system P satisfies a given specification. The
most successful contemporary approach to formal verification is model checking,
in which an abstract, finite state model of the system of interest P is represented
as a Kripke structure KP (a labelled transition system), and the specification is
represented as a temporal logic formula φ, the models of which are intended to
correspond to “correct” behaviours of the system [11]. The verification process
then reduces to establishing whether the specification formula φ is satisfied in
the Kripke structure KP (notation: KP |= φ), a process that can be efficiently
automated in many settings of interest [7]. For example, model checking Linear
Temporal Logic (LTL) specifications can be done in polynomial space, and for
specifications in Computation Tree Logic (CTL) it can be done in polynomial
time [8].

In the context of multiagent systems, rational verification forms a natural
counterpart of model checking [16,33,17]. This is the problem of checking whether
a given property φ, expressed as a temporal logic formula, is satisfied in a com-
putation of a system that might be generated if agents within the system choose
strategies for selecting actions that form a game-theoretic equilibrium. This game
theoretic aspect of rational verification adds a new ingredient to the verification
problem, as it becomes necessary to take into account the preferences of players
with respect to the possible runs of the system. Typically, in rational verification,
such preferences are given by associating an LTL goal γi with each player i in the
game: player i prefers all those runs of the system that satisfy γi over those that do
not, is indifferent between all those runs that satisfy γi, and is similarly indiffer-
ent between those runs that do not satisfy γi. In this setting, rational verification
with respect to a specification φ is 2EXPTIME-complete, regardless of whether
the representation of the system is given succinctly [17,16] or explicitly simply as
a finite-state labelled transition graph [15]. This high computational complexity
represents a key barrier to the wider take-up of rational verification.

Our aim in this work is to improve this state of affairs: we present a range of
settings for which we are able to give complexity results that greatly improve on
the 2EXPTIME-complete result of the general LTL case. We first consider games
where the goals of players are represented as GR(1) formulae. GR(1) is an important
fragment of LTL that can express a wide range of practically useful response prop-
erties of concurrent and reactive systems [4]. We then consider mean-payoff utility
functions: one of the most studied reward and quality measures used in games
for automated formal verification. In each case, we study the rational verification
problem for system specifications φ given as GR(1) formulae and as LTL formulae,
with respect to system models that are formally represented as concurrent game
structures [1].
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Our main results, summarised in Table 1, show that in the cases mentioned
above, the 2EXPTIME result can be dramatically improved, to settings where
rational verification can be solved in polynomial space, NP, or even in polynomial
time, if the number of players in the game is assumed to be fixed.

Players’ goals Specification E-Nash

LTL LTL 2EXPTIME-complete

GR(1) LTL PSPACE-complete (Corollary 1)

GR(1) GR(1) FPT (Theorem 3)

mp LTL PSPACE-complete (Corollary 2)

mp GR(1) NP-complete (Theorem 5)

Table 1 Summary of main complexity results.

In addition to characterising the complexity of the core rational verification
problems for these settings, we also consider the problem of computing strategy
profiles for players that maximise social welfare. Measures of social welfare are
measures of how well society as a whole fares with some particular game out-
come; thus social welfare measures are aggregate measures of utility. We look at
two well-known measures of social welfare: utilitarian social welfare (in which we
aim to maximise the sum of individual agent utilities) and egalitarian social wel-
fare (in which we try to maximise the utility of the worst-off player). We show
that, for mean payoff games, computing outcomes for these measures with LTL
specifications is PSPACE-complete.

Related Work

The rational verification problem has been studied for a number of different set-
tings, including iterated Boolean games, reactive modules games, and concurrent
game structures [16,17,15,18]. In each of these settings, the main rational verifica-
tion problems are 2EXPTIME-complete, and hence highly intractable. Rational ver-
ification is closely related to rational synthesis, which is also 2EXPTIME-complete
both in the Boolean case [13] and with rational environments [24]. One might
mitigate the problem of intractability by considering low-level languages such as
omega-regular specifications [31,10] and turn-based setting [9]. All of the above
cases only consider perfect information. In settings with imperfect information,
the problem has been shown to be undecidable both for games with succinct and
explicit model representations [22,12].

Our work also relates to LTL and mean-payoff (mp) games in general. While
the former are already 2EXPTIME-complete even for two-player games (and in fact
already 2EXPTIME-hard for many LTL fragments [2]), the latter are NP-complete
for multi-player games [32] and in NP∩coNP for two-player games [34], and in fact
solvable in quasipolynomial time since they can be reduced to two-player perfect-
information parity games [6]. Even though we provide several complexity results
that improve on the complexity of the general case, our solutions are unlikely to run
in polynomial time, for instance as CTL model checking, since rational verification
subsumes problems that are typically not known to be solvable in polynomial time,
such as model checking or automated synthesis with temporal logic specifications.
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2 Preliminaries

Linear Temporal Logic. LTL extends propositional logic with two operators, X
(“next”) and U (“until”), for expressing properties of paths [27,11]. The syntax
of LTL is defined with respect to a set AP of atomic propositions as follows:

ϕ ::= ⊤ | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

where p ∈ AP. As usual, we define ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨¬ϕ2), ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2,
Fϕ ≡ ⊤ Uϕ, and Gϕ ≡ ¬F¬ϕ. We interpret LTL formulae with respect to pairs
(α, t), where α ∈ (2AP)ω is an infinite sequence of sets of atomic proposition that
indicates which propositional variables are true in every time point and t ∈ N is a
temporal index into α. As usual, by αt ∈ 2AP we denote the t-th element of the
infinite sequence α. Formally, the semantics of LTL is given by the following rules:

(α, t) |= ⊤
(α, t) |= p iff p ∈ αt
(α, t) |= ¬ϕ iff it is not the case that (α, t) |= ϕ
(α, t) |= ϕ ∨ ψ iff (α, t) |= ϕ or (α, t) |= ψ
(α, t) |= Xϕ iff (α, t+ 1) |= ϕ
(α, t) |= ϕUψ iff for some t′ ≥ t :

(
(α, t′) |= ψ and

for all t ≤ t′′ < t′ : (α, t′′) |= ϕ
)
.

If (α, 0) |= ϕ, we write α |= ϕ and say that α satisfies ϕ.

General Reactivity of rank 1. The language of General Reactivity of rank
1, (GR(1)), is the fragment of LTL containing formulae that are written in the
following form [4]:

(GFψ1 ∧ . . . ∧GFψm) → (GFϕ1 ∧ . . . ∧GFϕn),

where subformulae ψi and ϕi are Boolean combinations of atomic propositions.

Mean-Payoff value. For an infinite sequence β ∈ Rω of real numbers, let mp(β)
be denote mean-payoff value of β, that is,

mp(β) = lim inf
n→∞

avgn(β)

where, for n ∈ N, we define

avgn(β) =
1

n

n−1∑
j=0

βj .

Arenas. An arena is a tuple

A =⟨N,Ac,St, s0, tr, λ⟩

where N, Ac, and St are finite non-empty sets of players (write N = |N|), actions,
and states, respectively; s0 ∈ St is the initial state; tr : St× A⃗c → St is a transition
function mapping each pair consisting of a state s ∈ St and an action profile
a⃗ ∈ A⃗c = AcN, one for each player, to a successor state; and λ : St → 2AP is a
labelling function, which maps every state to a subset of atomic propositions—the
atomic propositions that are true at that state.
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We sometimes refer to an action profile a⃗ = (a1, . . . , an) ∈ A⃗c as a decision,
and denote by ai the action taken by player i. We also consider partial decisions.
For a set of players C ⊆ N and action profile a⃗, we let a⃗C and a⃗−C be two tuples
of actions, respectively, one for all players in C and one for all players in N \ C.
We also write a⃗i for a⃗{i} and a⃗−i for a⃗N\{i}. For two decisions a⃗ and a⃗′, we write
(⃗aC , a⃗

′
−C) to denote the decision where the actions for players in C are taken from

a⃗ and the actions for players in N \ C are taken from a⃗′.

A path π = (s0, a⃗
0), (s1, a⃗

1), . . . is an infinite sequence in (St× A⃗c)ω such that
tr(sk, a⃗

k) = sk+1 for all k. Paths are generated in the arena by each player i
selecting a strategy σi that will define how to make choices over time. We model
strategies as finite state machines with output. Formally, for arena A, a strategy
σi = (Qi, q

0
i , δi, τi) for player i is a finite state machine with output (a transducer),

where Qi is a finite and non-empty set of internal states, q0i is the initial state,
δi : Qi×A⃗c → Qi is a deterministic internal transition function, and τi : Qi → Aci
an action function, Aci ⊆ Ac for all i ∈ N. Let Stri be the set of strategies for player
i. A strategy profile σ⃗ = (σ1, . . . , σn) is a vector of strategies, one for each player.
As with actions, σ⃗i denotes the strategy assigned to player i in profile σ⃗. Moreover,
by (σ⃗B , σ⃗

′
C) we denote the combination of profiles where players in disjoint B and

C are assigned their corresponding strategies in σ⃗ and σ⃗′, respectively.

Once a state s and a strategy profile σ⃗ are fixed, the game has an outcome, a
path in A, which we denote by π(σ⃗, s). Because strategies are deterministic, π(σ⃗, s)
is the unique path induced by σ⃗, that is, the sequence (s0, a⃗

0), (s1, a⃗
1), . . . such

that

– sk+1 = tr(sk, a⃗k), and
– a⃗k+1 = (τ1(q

k
1 ), . . . , τn(q

k
n)), for all k ≥ 0.

Where qk+1
i = δi(q

k
i , (τ1(q

k
1 ), . . . , τn(q

k
n))) is the unique sequence of internal states

of strategy σi in σ⃗ obtained by feeding the result of previous computation at each
step.

Arenas define the dynamic structure of games (the actions that agents can
perform and their consequences), but lack the feature of games that gives them
their strategic nature: players’ preferences. A multi-player game is obtained from
an arena A by associating each player with a goal. As indicated above, previous
work has considered players with goals expressed as LTL formulae, with the idea
being that an agent will act as best they can to ensure their LTL goal is satisfied
(taking into account the fact that other players will act likewise). In the present
article, we consider both goals that are expressed as GR(1) formulae, and mean
payoff (mp) goals:

– A multi-player GR(1) game is a tuple GGR(1) =⟨A, (γi)i∈N⟩ where A is an arena
and γi is the GR(1) goal for player i.

– A multi-player mp game is a tuple Gmp =⟨A, (wi)i∈N⟩, where A is an arena and
wi : St → Z is a function mapping every state of the arena into an integer.

When it is clear from the context, we refer to a multi-player GR(1) or mp game
as a game and denote it by G. In any game with arena A, a path π in A induces
a sequence λ(π) = λ(s0)λ(s1) · · · of sets of atomic propositions; if, in addition,
A is the arena of an mp game, then, for each player i, the sequence wi(π) =
wi(s0)wi(s1) · · · of weights is also induced.
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For a GR(1) game and a path π in it, the payoff of a player i is payi(π) = 1 if
λ(π) |= γi and payi(π) = 0 otherwise. Regarding an mp game, the payoff of player i
is payi(π) = mp(wi(π)). Moreover, for a GR(1) game and a path π, by Win(π) =
{i ∈ N : λ(π) |= γi} and Lose(π) = {j ∈ N : λ(π) ̸|= γj} we denote the set of
winners and losers, respectively, over π, that is, the set of players that get their
goal satisfied and not satisfied, respectively, over π. With an abuse of notation,
we sometime denote Win(σ⃗, s) = Win(π(σ⃗, s)) and Lose(σ⃗, s) = Lose(π(σ⃗, s)),
respectively, the set of winners and losers over the path generated by strategy
profile σ⃗ when starting the game from s. Furthermore, we simply write π(σ⃗) for
π(σ⃗, s0).

Nash equilibrium. Using payoff functions, we can define the concept of Nash
equilibrium [25]. For a game G, a strategy profile σ⃗ is a Nash equilibrium of G if,
for every player i and strategy σ′

i ∈ Stri, we have

payi(π(σ⃗)) ≥ payi(π((σ⃗−i, σ
′
i))) .

Let NE(G) be the set of Nash equilibria of G.
E-Nash and rational verification. In rational verification, a key question/problem
is E-Nash, which is concerned with the existence of a Nash equilibrium that fulfils
a given temporal specification φ. Formally, E-Nash is defined as follows:

Definition 1 (E-Nash) Given a game G and a formula φ:

Does there exist σ⃗ ∈ NE(G) such that π(σ⃗) |= φ?

Previous work [16,17,15,18] has demonstrated that, if we assume player goals
are expressed as LTL formulae, the E-Nash problem is 2EXPTIME-complete, and
hence highly intractable. Motivated by this, in this article, we study E-Nash for a
number of relevant instantiations of the problem, which we show to have better
(lower) computational complexity. In particular, we study cases where

– Specifications φ are LTL and players’ goals are GR(1);
– Specifications φ are LTL and players have mp goals;
– Both the specification φ and the goals are GR(1);
– Specifications φ are GR(1) and players have mp goals.

Automata. Some of the algorithms we present for the E-Nash problem use tech-
niques from automata theory. Specifically, we use deterministic automata on in-
finite words with Streett acceptance conditions. Formally, a deterministic Streett
automaton on infinite words (DSW) is a tuple A = (Σ,Q, q0, δ, Ω) where Σ is
the input alphabet, Q is a finite set of states, δ : Q × Σ → Q is a transition
function, q0 is an initial state, and Ω is a Streett acceptance condition. A Streett
condition Ω is a set of pairs {(E1, C1), . . . , (En, Cn)} where Ek ⊆ Q and Ck ⊆ Q
for all k ∈ [1, n]. A run ρ is accepting in a DSW A with condition Ω if ρ either
visits Ek finitely many times or visits Ck infinitely often, i.e., if for every k either
inf (ρ) ∩ Ek = ∅ or inf (ρ) ∩ Ck ̸= ∅.

3 Games of General Reactivity of Rank 1

We consider two variations of GR(1) games: in the first, the specification formula is
expressed in LTL, while the goals are in GR(1); in the second, both the specification
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formula and the goals belong to GR(1). We begin by providing a general result
characterizing Nash Equilibrium for GR(1), which is given in terms of punishments.
We first require some notation.

For a GR(1) game G, player j ∈ N, and state s ∈ St, the strategy profile σ⃗−j is
punishing for player j in s if π((σ⃗−j , σ

′
j), s) ̸|= γj , for every possible strategy σ′

j of
player j. We say that a state s is punishing for j if there exists a punishing strategy
profile for j on s. Moreover, we denote by Punj(G) the set of punishing states in G.
A pair (s, a⃗) ∈ St×A⃗c is punishing-secure for player j, if tr(s, (⃗a−j , a

′
j)) ∈ Punj(G)

for every action a′j .

Theorem 1 In a given GR(1) game G, there exists a Nash Equilibrium if and only
if there exists an ultimately periodic path π such that, for every k ∈ N, the pair
(sk, a⃗

k) of the k-th iteration of π is punishing-secure for every j ∈ Lose(π).

Proof (Proof sketch) The proof proceeds by double implication.
From left to right, let σ⃗ ∈ NE(G) and π be the ultimately periodic path gen-

erated by σ⃗. Assume by contradiction that π is not punishing-secure for some
j ∈ Lose(π), that is, there is k ∈ N and action a′j such that tr(sk, (⃗a−j , a

′
j)
k) /∈

Punj(G). Thus, j can deviate at sk and satisfy γj , which is a contradiction to σ⃗
being a Nash equilibrium.

From right to left, recall that π can be generated by a finite transducer, say
T π = ⟨T, t0, δπ, τπ⟩ with δπ : T × A⃗c → T being the internal function and

τπ : T → A⃗c being the action function that generates π. Moreover, observe
that such transducer can be decomposed into strategies σπi =⟨T, t0, δπ, τπi ⟩ where
τπi (t) = τπ(t)i. Moreover, for every losing player j ∈ Lose(π), there is a memory-

less punishing strategy profile σ
pun
−j : St → A⃗c−j for j in every s ∈ Punj(G). Such

strategy can also be decomposed and distributed to the agents different from j as
σpun,i−j (s) = σpun−j (s)i for every i ∈ N \ {j}.

Now, for every agent i, consider the strategy σi = ⟨Qi, q0i , δi, τi⟩ defined as
follows:

– Qi = T × S × ({⊤} ∪ Lose(π));
– q0i = (t0, s0,⊤);
– δi is defined as follows 1:

δi(t, s,⊤, a⃗) =

{
(δπ(t, a⃗), tr(s, a⃗),⊤), if a⃗ = τπ(t)

(δπ(t, a⃗), tr(s, a⃗), j), if a⃗−j = (τπ(t))−j and a⃗j ̸= (τπ(t))j
δi(t, s, j, a⃗) = (δπ(t, a⃗), tr(s, a⃗), j)

– τi(t, s, ι) =

{
τπi (t) if ι = ⊤
σpun,i−ι (s) otherwise

Intuitively, the strategy σi mimics the transducer T π to produce the play π. In
addition to this, it keeps track of the actions taken by the losing agents, checking
whether they adhere to the transducer or they deviate unilaterally from it. In case
of a deviation of agent j, the strategy σi flags the deviating agent and switches
from mimicking T π to adopting the punishment strategy σpunj .

We need to show that the strategy profile σ⃗ is a Nash Equilibrium.

1 Note that we should define the internal and action functions on their entire domains.
However, their definition for the other cases is irrelevant in the proof.
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Clearly, as π(σ⃗) = π, all the agents that are winning over π do not have a bene-
ficial deviation. For a losing agent j, observe that a unilateral deviation σj triggers
the strategy profile σ⃗−j to implement a punishment over j. Moreover, observe that
GR(1) objectives are prefix-independent, which implies that the punishment takes
effect no matter at which instant of the computation is started being adopted.
Therefore, every deviation σ⃗′

j cannot be beneficial for agent j, and hence σ⃗ is a
Nash Equilibrium. ⊓⊔

With this result in place, the following procedure can be seen to solve E-Nash:

1. Guess a set W ⊆ N of winners;
2. For each player j ∈ L = N \W , a loser in the game, compute its punishment

region Punj(G);
3. Remove from G the states that are not punishing for players j ∈ L and the

edges (s, s′) that are labelled with an action profile a⃗ such that (s, a⃗) is not
punishing-secure for some j ∈ L, thus obtaining a game G−L;

4. Check whether there exists an ultimately periodic path π in G−L such that
π |= φ ∧

∧
i∈W γi holds.

Expressed more formally, the above procedure yields Algorithm 1.

Algorithm 1: E-Nash of GR(1) games.

1 Input: A game GGR(1) and a specification formula φ.

2 for i ∈ N do
3 Compute Puni(G)
4 for W ⊆ N do
5 Compute L = N \W

6 Compute G−L

7 if π |= (φ ∧
∧
i∈W γi) for some π ∈ G−L then

8 return Accept

9 return Reject

While line 6 requires solving the model checking problem for an LTL formula,
which can be done in polynomial space, line 5 can be done in polynomial time.
Line 4, on the other hand, makes the procedure run in exponential time in the
number of players, but still in polynomial space. We then only need to consider
line 3: this step can be done in polynomial time, as we now show.

Theorem 2 For a given GR(1) game G over the arena A = ⟨N,Ac,St, s0, tr, λ⟩
and a player j ∈ N, computing the punishing region Punj(G) of player j can be
done in polynomial time with respect to the size of both G and γj.

Proof We reduce the problem to computing the winning region of a suitably de-
fined Streett game with a single pair as the winning condition, whose complexity
is known to be O(mnk+1kk!) [26]. Given that in our case we have k = 1, we obtain
a polynomial time algorithm.

Recall that the goal of player j is of the form:
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γj =

mj∧
l=1

GFψjl →
nj∧
r=1

GFθjr,

where ψjl ’s and θjr’s are boolean combinations of atomic propositions. Then, con-
sider the arena A′ =⟨N,Ac, St′, s′0, tr

′⟩ 2 where

– St′ = St× {0, . . . ,mj} × {0, . . . , nj};
– s′0 = (s0, 0, 0);
– tr′((s, ι1, ι2), a⃗) = (tr(s, a⃗), ι′1, ι

′
2) where

ι′1 =

{
(ι1 ⊕(mj+1) 1), if ι1 = 0 or s |= ψjι1 .

ι1, otherwise.

ι′2 =

{
(ι2 ⊕(nj+1) 1), if ι2 = 0 or s |= θjι2 .

ι2, otherwise.

And by ⊕k we denote the addition modulo k.

Intuitively, arena A′ mimics the behaviour of A and carries two indexes, ι1 and
ι2. Index ι1 is increased by one every time the path visits a state that satisfies ψjι1
and resets to 0 every time the path visits a state that satisfies ψjmj

. Clearly, ι1 is

reset infinitely many times if and only if the path satisfies every ψjl infinitely many

times, and so if and only if it satisfies the temporal specification
∧mj

l=1 GFψjl . The
same argument applies to index ι2, but with respect to the boolean combinations
θjr’s.

Now, consider the sets Cj = St×{0}×{0, . . . , nj} and Ej = St×{0, . . . ,mj}×
{0}. Clearly, the Streett pair (Cj , Ej) is satisfied by all and only the paths in A′

that satisfy γj . Therefore, the winning region of γj can be computed as the winning
set of the Streett game with (Cj , Ej) being the only Streett pair. Observe that the
winning region is computable as Street games are determined. Moreover, having
a number of pairs fixed, the computation can be done in polynomial time, which
proves our statement. ⊓⊔

Based on Theorem 2, we have the following result.

Corollary 1 The E-Nash problem for GR(1) games with an LTL specification is
PSPACE-complete.

Proof The upper-bound follows from the procedure described above. Regarding
the lower-bound, note that model-checking an LTL formula φ against a Kripke
structure K can be easily encoded as an instance of E-Nash where G is played over
a Kripke structure K, taken to be its arena, players’ goals being tautologies, and
the specification being ¬φ. In such a case, we have that K |= φ if and only if
E-Nash for the pair (G, φ) has a negative answer. ⊓⊔

Corollary 1 sharply contrasts with the complexity of E-Nash when goals ex-
pressed as LTL formulae: in this more general case, E-Nash is 2EXPTIME-complete.

The special case of GR(1) specifications. One of hardest parts of Algorithm 1
is line 6, where an LTLmodel checking problem must be solved, thereby making the

2 We omit the definition of labelling function, as not needed here.
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running time of the overall procedure exponential in the size of the specification
and goals of the players. As we show in the reminder of this section, one way to
drastically reduce the complexity of our decision procedure is to require that the
specification is also expressed in GR(1). In such a case, the LTL model checking
procedure in line 6 of Algorithm 1 can be avoided, leading to a much simpler
construction, which runs in polynomial time for every fixed number of players. In
this section, we provide precisely such a simpler construction.

Recall that every GR(1) specification φ can be regarded as a Streett condi-
tion with a single pair over an arena A′ suitably constructed from the original
arena A [3]. Thus, by denoting (Cφ, Eφ) and (Ci, Ei) the Streett pairs correspond-
ing to the GR(1) conditions φ and γi, respectively, the problem of finding a path
in A′ satisfying the formula φ∧

∧
i∈W γi amounts to deciding the emptiness of the

Streett automaton A =⟨A⃗c,St′, s′0, tr, Ω⟩ where Ω = {(Cφ, Eφ), (Cγi , Eγi)i∈W }.
Note that the size of A′ is polynomial in the size of the GR(1) formulae involved,

polynomial in the number of states and actions in the original arena A, and expo-
nential in the number of players. More specifically, we have that |St′| = |St| · |γ||N|

and so the number of edges is at most |St′|2. Moreover, the emptiness problem of a
deterministic Streett word automaton can be solved in time that is polynomial in
the automaton’s index and its number of states and transitions [29,23]. The com-
plexity of the E-Nash problem takes 2|N| times a procedure for computing at most
|N | punishing regions (that is polynomial in the size of both G and φ, γ1, . . . , γN )
plus the complexity of the emptiness problem for a Streett automaton whose size
is polynomial in G φ, γ1, . . . , γN , and exponential in the number of players.

Based on the constructions described above, we have the following (fixed-
parameter tractable) complexity result.

Theorem 3 For a given GR(1) game G and a GR(1) formula φ, the E-Nash prob-
lem can be solved in time that is polynomial in |St|, |Ac|, and |φ|, |γ1|, . . . , |γN | and
exponential in the number of players |N|. Therefore, the problem is fixed-parameter
tractable, parametrized in the number of players.

4 Mean-Payoff Games

We now focus on multi-player mean-payoff (mp) games. As in the previous case, we
first characterise the Nash Equilibria of a game in terms of punishments and then
reduce E-Nash to a suitable path-finding problem in the underlying arena. To do
this, we first need to recall the notion of secure values for mean-payoff games [32].

For a player i and a state s ∈ St, by puni(s) we denote the punishment value
of i over s, that is, the maximum payoff that i can achieve from s, when all other
players behave adversarially. Such a value can be computed by considering the
corresponding two-player zero-sum mean-payoff game [34]. Thus, it is in NP∩coNP,
and note that both player i and coalition N \ {i} can achieve the optimal value of
the game using memoryless strategies.

For a player i and a value z ∈ R, a pair (s, a⃗) is z-secure for i if puni(tr(s, (⃗a−i, a
′
i))) ≤

z for every a′i ∈ Ac.

Theorem 4 For every mp game G and ultimately periodic path π = (s0, a⃗0), (s1, a⃗1), . . .,
the following are equivalent
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1. There is σ⃗ ∈ NE(G) such that π = π(σ⃗, s0);
2. There exists z⃗ ∈ RN, where zi ∈ {puni(s) : s ∈ St} such that, for every i ∈ N

(a) for all k ∈ N, the pair (sk, a⃗
k) is zi-secure for i, and

(b) zi ≤ payi(π).

Proof The proof proceeds by double implication.
For the case (1) ⇒ (2), assume that σ⃗ ∈ NE(G) is such that π(σ⃗) = π. Thus,

define zi = max{puni(tr(sk, (⃗a
k
−i, a

′))) : k ∈ N, a′ ∈ Aci}, that is, the max value
agent i can achieve by unilaterally deviating from any point in π and getting
immediately punished. By definition, we obtain that (sk, a⃗

k) is zi-secure for i, at
every k ∈ N. Moreover, assume by contradiction that payi(π) < zi for some agent
i. Then, let k ∈ N and a′i ∈ Aci be such that zi = puni(sk, (⃗a−i, a

′
i)). Thus, there

exists a strategy σ′
i that follows σ⃗i for k steps and then deviates using a′i that

ensures a payoff of zi for agent i. Such strategy is a beneficial deviation of agent i
from σ⃗, in contradiction with the fact that σ⃗ is a Nash Equilibrium.

For the case (2) ⇒ (1), we define a strategy profile σ⃗ and then prove it is a Nash
Equilibrium. First observe that, being π ultimately periodic, there exists a finite
transducer T π = ⟨T, t0, δπ, τπ⟩ with δπ : T × A⃗c → T being the internal function

and τπ : T → A⃗c being the action function that generates π. Moreover, observe
that such transducer can be decomposed into strategies σπi =⟨T, t0, δπ, τπi ⟩ where
τπi (t) = τπ(t)i. In addition to this, for every agent j, consider the memoryless

strategy σpun−j : St → A⃗c−j that minimizes the payoff of agent j in every state s ∈
St. Such strategy can also be decomposed and distributed to the agents different
from j as σpun,i−j (s) = σpun−j (s)i for every i ∈ N\{j}. Now, for every agent i, consider

the strategy σi =⟨Qi, q0i , δi, τi⟩ defined as follows:

– Qi = T × S × ({⊤} ∪N \ {i});
– q0i = (t0, s0,⊤);
– δi is defined as follows:

δi(t, s,⊤, a⃗) =

{
(δπ(t, a⃗), tr(s, a⃗),⊤), if a⃗ = τπ(t)

(δπ(t, a⃗), tr(s, a⃗), j), if a⃗−j = (τπ(t))−j and a⃗j ̸= (τπ(t))j
δi(t, s, j, a⃗) = (δπ(t, a⃗), tr(s, a⃗), j)

– τi(t, s, ι) =

{
τπi (t) if ι = ⊤
σpun,i−ι (s) otherwise

3

Intuitively, the strategy σi mimics the transducer T π to produce the play π. In
addition to this, it keeps track of the actions taken by the other agents, checking
whether they adhere to the transducer or they deviate unilaterally from it. In case
of a deviation of agent j, the strategy σi flags the deviating agent and switches
from mimicking T π to adopting the punishment strategy σpunj . Clearly, the strategy
profile σ⃗ =⟨σ1, . . . , σn⟩ is such that π(σ⃗) = π. It remains to show that it is a Nash
Equilibrium. Note that, since every strategy σi adopts the punishment for agent j
at every possible deviation. Note that, being ∓ a prefix independent condition, the
payoff for agent j is punished no matter at which instant the punishment strategy
is started being adopted. At this point, being every pair (sk, a⃗

k) in π zj-secure for
agent j, it holds that every deviation of agent j does not ensure a payoff greater

3 Note that we should define the internal and action functions on their entire domains.
However, their definition for the other cases is irrelevant in the proof.
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than zj , that is payj(σ⃗−j , σ⃗
′
j) ≤ zj . On the other hand, from condition (b) of item

2 in the statement, we have that zj ≤ payj(σ⃗). By putting these two conditions
together, we obtain

payj(σ⃗−j , σ⃗
′
j) ≤ zj ≤ payj(σ⃗).

This proves that every deviation of agent j from σ⃗ is not beneficial, and so that σ⃗
is a Nash Equilibrium. ⊓⊔

The characterization of Nash Equilibria provided in Theorem 4 allows us to
turn the E-Nash problem for mp games into a path finding problem over G. Similarly
to the case of GR(1) games, we have the following procedure.

1. For every i ∈ N and s ∈ St, compute the value puni(s);
2. Guess a vector z ∈ RN of values, each of them being a punishment value for a

player i;
3. Compute the game G[z] by removing the states s such that puni(s) ≤ zi for

some player i and the transitions (s, a⃗) that are not zi secure for some player
i;

4. Find an ultimately periodic path π in game G[z] such that π |= φ and zi ≤
payi(π) for every player i ∈ N.

Step 1 can be done in NP for every pair (i, s), step 2 can be done in exponential
time and polynomial space in the number of z-secure values, and step 3 can be
done in polynomial time, similar to the case of GR(1) games. Regarding the last
step, its complexity depends on the specification language. For the case of φ being
an LTL formula, consider the formula

φE-Nash := φ ∧
∧
i∈N

(mp(i) ≥ zi),

written in the language LTLLim, an extension of LTL where statements about mean-
payoff values over a given weighted arena can be made [5]. Observe that formula
φE-Nash corresponds exactly to requirement 2(b) in Theorem 4. Moreover, since
every path in G[z] satisfies condition 2(a) by construction, every path that satisfies
φE-Nash is a solution of the E-Nash problem and vice versa. We can solve the latter
problem by model checking the formula against the arena underlying G[z]. Since
this can be done in PSPACE [5], we have the following result.

Corollary 2 The E-Nash problem for mp games with an LTL specification formula
φ is PSPACE-complete.

As for the case of GR(1) games, we can summarize the procedure in the fol-
lowing algorithm (Algorithm 2).

The special case of GR(1) specifications. As in the case of GR(1) games,
here we show that restricting the specification language to GR(1) also lowers the
complexity for mp games. The reason for this is that the path finding problem
for GR(1) specifications can be done while avoiding model-checking an LTLLim

formula. In order to do this, we follow a different approach. Using an mp game
G and a GR(1) specification ϕ we define a linear program such that the linear
program has a solution if and only if the pair (G, ϕ) is an instance of E-Nash. In
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Algorithm 2: E-Nash of mp games.

1 Input: A game Gmp and a specification formula φ.
2 for i ∈ N and s ∈ St do
3 Compute puni(G)
4 for z⃗ ∈ {puni(s) : s ∈ St}N do
5 Compute G[z]
6 if π |= φE-Nash for some π ∈ G[z] then
7 return Accept

8 return Reject

particular, this approach is similar to the technique used in [19, Theorem 2], where
Linear Programming is used to find the complexity of solving a variant of E-Nash.
Formally, we have the following result.

Theorem 5 The E-Nash problem for mp games with a GR(1) specification φ is
NP-complete.

Proof We will define a linear program of size polynomial in G having a solution if
and only if there exists an ultimately periodic path whose payoff for every player
i is at least a minimum threshold zi and satisfies the GR(1) specification.

In order to do that, first recall that φ has the following form

φ =
m∧
l=1

GFψl →
n∧
r=1

GFθr,

and let V (ψl) and V (θr) be the subset of states in G that satisfy the Boolean
combinations ψl and θr, respectively. Observe that property φ is satisfied over a
path π if, and only if, either π visits every V (θr) infinitely many times or visits
some of the V (ψl) only a finite number of times.

For the game G[z], let ⟨V,E, (w′
i)i∈N⟩ be the underlying graph, where w′

i(v) =
wi(v)− zi for every i ∈ N, and v ∈ V ⊆ St. Furthermore, for every edge e ∈ E, we
introduce a variable xe. Informally, the value xe is the number of times that the
edge e is used on a cycle. Formally, let:

– src(e) = {v ∈ V : ∃w e = (v, w) ∈ E};
– trg(e) = {v ∈ V : ∃w e = (w, v) ∈ E};
– out(v) = {e ∈ E : src(e) = v};
– in(v) = {e ∈ E : trg(e) = v}.

Consider ψl for some 1 ≤ l ≤ m, and define the linear program LP(ψl) with
the following inequalities and equations:

Eq1: xe ≥ 0 for each edge e
a basic consistency criterion;

Eq2: Σe∈Exe ≥ 1
ensures that at least one edge is chosen;

Eq3: for each i ∈ N, Σe∈Ew
′
i(src(e))xe ≥ 0
ensures that the total sum of any solution is positive;
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Eq4: Σsrc(e)∩V (ψl) ̸=∅xe = 0
ensures that no state in V (ψl) is in the cycle associated with the solution;

Eq5: for each v ∈ V , Σe∈out(v)xe = Σe∈in(v)xe
says that the number of times one enters a vertex is equal to the number of

times one leaves that vertex.

By construction, it follows that LP(ψl) admits a solution if and only if there
exists a path π in G such that zi ≤ payi(π) for every player i and visits V (ψl)
only finitely many times. Note that the condition zi ≤ payi(π) is ensured by Eq3.
Indeed, the value of a path π in G[z] that is represented in a solution to LP(ψl),

and thus satisfying Eq3, is such that 0 ≤ pay
G[z]
i (π), with pay

G[z]
i representing the

payoff function for agent i in the game G[z]. Now observe that, as the weights in
G[z] are all downshifted by a value zi for every agent i, it holds that payi(π) =

pay
G[z]
i (π) + zi, which in turns implies that zi ≤ payi(π).
Now, consider also the linear program LP(θ1, . . . , θn) defined with the following

inequalities and equations:

Eq1: xe ≥ 0 for each edge e
a basic consistency criterion;

Eq2: Σe∈Exe ≥ 1
ensures that at least one edge is chosen;

Eq3: for each i ∈ N, Σe∈Ew
′
i(src(e))xe ≥ 0
ensures that the total sum of any solution is positive;

Eq4: for all 1 ≤ r ≤ n, Σsrc(e)∩V (θr) ̸=∅xe ≥ 1
ensures that for every V (θr) at least one state is in the cycle;

Eq5: for each v ∈ V , Σe∈out(v)xe = Σe∈in(v)xe
says that the number of times one enters a vertex is equal to the number of

times one leaves that vertex.

In this case, LP(θ1, . . . , θn) admits a solution if and only if there exists a path
π such that zi ≤ payi(π) for every player i and visits every V (θr) infinitely many
times.

Since the constructions above are polynomial in the size of both G and ϕ, we
can conclude it is possible to check in NP the statement that there is a path π
satisfying φ such that zi ≤ payi(π) for every player i in the game if and only if one
of the two linear programs defined above has a solution. For the lower bound, we
use [32] and observe that if ϕ is true, then the problem is equivalent to checking
whether the mp game has a Nash equilibrium. ⊓⊔

5 Social welfare verification

Until this point, the problems considered primarily concerned about the satis-
faction of a temporal logic property φ over the game G. However, one might be
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interested in achieving an outcome that is somehow best also for the agent soci-
ety. To capture this setting, we introduce social welfare measures. Social welfare
measures are aggregate measures of utility. Thus, a social welfare measure takes as
input a profile of utilities, one for each player in the game, and somehow aggregates
these into an overall measure, indicating how good the outcome is for society as a
whole. Note that since social welfare is inherently a quantitative measure, in this
section we restrict our attention to mp games.

Formally, for a game G with a set N of agents, a social welfare function sw
takes the form

sw : RN → R

Thus, a social welfare function maps a N -tuple of real numbers into a real number
which represents the aggregated payoff. More specifically, for a strategy profile σ⃗,
the social welfare of σ⃗ is given by sw(pay1(σ⃗), . . . , payN (σ⃗)). With an abuse of
notation, we denote sw(σ⃗) the social welfare of σ⃗. Many different social welfare
functions have been proposed in the literature of economic theory. Here, we confine
out attention to the two best known: utilitarian and egalitarian social welfare.
These functions are defined as follows:

– The utilitarian social welfare function is given by usw(σ⃗) =
∑
i∈N payi(σ⃗).

– The egalitarian social welfare function is given by esw(σ⃗) = mini∈N{payi(σ⃗)}.

For simplicity, for a given game G and a formula φ, by E-NashG(φ) = {σ⃗ ∈ NE
: π(σ⃗) |= φ} we denote the set of Nash equilibria that satisfy φ, that is, that are
a solution to the E-Nash problem of (G, φ). For a fixed social welfare function sw
on a game G, by:

– MaxNEsw(G, φ) = maxσ⃗∈E-NashG(φ){sw(σ⃗)}, and
– MinNEsw(G, φ) = minσ⃗∈E-NashG(φ){sw(σ⃗)}

we denote the maximal and minimal social welfare achieved over a Nash equilib-
rium profile, respectively, satisfying a given specification φ.

The values of MaxNE and MinNE determine how good or bad the E-Nash so-
lutions are from the perspective of the agents in the game collectively. Here, we
consider both the decision and function problem.

Definition 2 (Threshold social welfare) For a given mp game Gmp, a social
welfare function sw, and a threshold value t, decide whether there exists a strategy
profile σ⃗ in E-NashG(φ) such that t ≤ sw(σ⃗). In case of a positive answer to this
decision question, the pair (G, φ) is called t-increase.

Analogously, decide whether there exists a strategy profile σ⃗ in E-NashG(φ)
such that t ≥ sw(σ⃗). In case of a positive answer to this decision question, the pair
(G, φ) is called t-decrease.

Definition 3 (Max and Min social welfare) For a given mp game Gmp and a
social welfare function sw, compute MaxNEsw(G, φ) and MinNEsw(G, φ).

The two definitions above can be instantiated with many different social welfare
functions. In the following two subsections, we consider them in the context of the
utilitarian and egalitarian welfare measures defined above.
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5.1 Social welfare computation with LTL specifications

We first show how to check that a given mp game Gmp and a LTL specification
meets a given threshold t. As the utilitarian and egalitarian functions require
different proofs, we address them separately. For the utilitarian function, we have
the following.

Theorem 6 For a given mp game Gmp =⟨A, (wi)i∈N⟩, an LTL specification φ, and
a threshold value t, deciding whether there exists a strategy profile σ⃗ ∈ E-NashG(φ)
such that t ≤ usw(σ⃗) is PSPACE-complete. Analogously, deciding whether there
exists a strategy profile σ⃗ ∈ E-NashG(φ) such that t ≥ usw(σ⃗) is PSPACE-complete.

Proof It is enough to show the case t ≤ usw(σ⃗) as the other one is similar. The
solution is a slight modification of the E-Nash problem for mp games with LTL
specifications. Consider the arena A′ = ⟨N ∪ {n + 1},Ac,St, s0, tr

′, λ⟩ with tr′

defined as

tr′(a1, . . . , an, an+1) = tr(a1, . . . , an)

for every (a1, . . . , an, an+1) ∈ Ac|N|+1, and the mp game G′
mp =⟨A′, (wi)i∈N, (wn+1)⟩

with wn+1(s) =
∑
i∈N(wi(s)) for every s ∈ St.

Intuitively, we have included an extra agent in the game, having no effect/impact
on the executions, in a way that it carries information about the social welfare of
the original game. Indeed, observe that, for every strategy profile σ⃗ in G′

mp, it holds
that

pay′n+1(σ⃗) =
∑
i∈N

pay′i(σ⃗) =
∑
i∈N

payi(σ⃗−(n+1)) = usw(σ⃗−(n+1))

We can employ the same construction for solving the E-Nash problem for mp

games with LTL specifications to solve the threshold problem. It suffices to replace
the LTLLim formula φE-Nash with

φusw,t
E-Nash := φE-Nash ∧mp(n+ 1) ≥ t.

The computational complexity of the procedure is PSPACE as for E-Nash. The
lower bound easily follows from the model checking of LTL. ⊓⊔

For the case of egalitarian social welfare, we have the following.

Theorem 7 For a given mp game Gmp =⟨A, (wi)i∈N⟩, an LTL specification φ, and
a threshold value t, deciding whether there exists a strategy profile σ⃗ ∈ E-NashG(φ)
such that t ≤ esw(σ⃗) is PSPACE-complete. Analogously, deciding whether there
exists a strategy profile σ⃗ ∈ E-NashG(φ) such that t ≥ esw(σ⃗) is PSPACE-complete.

Proof It is enough to show the case t ≤ esw(σ⃗) as the other one is similar. As for
the case of utilitarian social welfare functions, the solution is a slight modification
of the E-Nash problem for mp games with LTL specifications. Indeed, observe that
we can specify that the payoff of agent i is greater than the threshold t by the
LTLLim formula mp(i) ≥ t. Therefore, specifying that the egalitarian social welfare
is at least t can be done by the conjunction

∧
i∈N mp(i) ≥ t. Thus, it suffice to

replace the LTLLim φE-Nash for the E-Nash problem with
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φesw,t
E-Nash := φE-Nash ∧

∧
i∈N

mp(i) ≥ t.

Again, the computational complexity of the procedure is PSPACE and the lower
bound follows from the model checking of LTL. ⊓⊔

5.2 Social welfare computation with GR(1) specifications

In this section, we address social welfare threshold problems with GR(1) specifica-
tions. The techniques are similar to the ones used in the case of LTL specifications.
Firstly, we consider the utilitarian social welfare function. For a given mp game
Gmp = ⟨A, (wi)i∈N⟩, we build the arena A′ and the game G′

mp analogous to the
way it is done in the proof of Theorem 6. Now, to solve the case t ≤ usw(σ⃗),
we adapt the procedure for solving E-Nash for mp games with GR(1) specifica-
tions (Theorem 5) as follows. We construct the corresponding multi-weighted
graph W = ⟨V,E, (w′

i)i∈N∪n+1⟩ where w′
n+1(v) = wn+1(s) − t. Then, solving

E-Nash problem for such an instance corresponds exactly to the threshold so-
cial welfare problem t ≤ usw(σ⃗). For the case t ≥ usw(σ⃗), we simply define
w′
n+1(v) = t − wn+1(s). To obtain the lower bounds, we reduce from the E-Nash

problem for mp games with GR(1) specifications. For the case t ≤ usw(σ⃗), we set
t = min{wn+1(s) : s ∈ St}, and the other case, we fix t = max{wn+1(s) : s ∈ St}.
Thus, we obtain the following result.

Theorem 8 For a given mp game Gmp =⟨A, (wi)i∈N⟩, a GR(1) specification φ, and
a threshold value t, deciding whether there exists a strategy profile σ⃗ ∈ E-NashG(φ)
such that t ≤ usw(σ⃗) is NP-complete. Analogously, deciding whether there exists a
strategy profile σ⃗ ∈ E-NashG(φ) such that t ≥ usw(σ⃗) is NP-complete.

Now we turn our attention to the egalitarian social welfare function. To solve
the social threshold problem t ≤ esw(σ⃗), we directly adapt from the procedure
for solving E-Nash for mp games with GR(1) specifications (Theorem 5). For the
game G[z], we build the underlying graph ⟨V,E, (w′

i)i∈N⟩ where w′
i(v) = wi(s) −

(max{zi, t}). Then we define the linear programs LP(ψl) and LP(θ1, . . . , θn) in
the same way. Observe that, one of the two linear programs has a solution if and
only if there is a path π satisfying φ such that for every player i, zi ≤ payi(π) and
t ≤ payi(π). To obtain the lower bound, again, we reduce from the E-Nash problem
for mp games with GR(1) specifications. The reduction simply follows from the fact
that by fixing t = min{wi(s) : i ∈ N, s ∈ St}, we can encode E-Nash problem into
the social threshold problem. The case t ≥ esw(σ⃗) is similar. Therefore, we obtain
the following result.

Theorem 9 For a given mp game Gmp =⟨A, (wi)i∈N⟩, a GR(1) specification φ, and
a threshold value t, deciding whether there exists a strategy profile σ⃗ ∈ E-NashG(φ)
such that t ≤ esw(σ⃗) is NP-complete. Analogously, deciding whether there exists a
strategy profile σ⃗ ∈ E-NashG(φ) such that t ≥ esw(σ⃗) is NP-complete.

The threshold social welfare calculation can be used to approximate the MaxNE
and MinNE values of a game, be it either utilitarian or egalitarian. Note that, for
every agent i ∈ N and every strategy profile σ⃗ in the game, it holds that
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min(wi) = min
s∈St

{wi(s)} ≤ payi(σ⃗) ≤ max
s∈St

{wi(s)} = max(wi).

This establishes a bound also on the social welfare function, which is given by∑
i∈N

min(wi) ≤ MinNEsw(G, φ) ≤ MaxNEsw(G, φ) ≤
∑
i∈N

max(wi).

Moreover, observe that, for two values t < t′, if (G, φ) is t-increase but not
t′-increase, then it holds that t ≤ MaxNEsw(G, φ) < t′. Analogously, if (G, φ) is
t′-decrease, but not t-decrease, then it holds that t ≤ MinNEsw(G, φ) < t′.

These observations allow to apply a bisection-like method to approximate
MaxNE and MinNE. Moreover, note that at each iteration of the method, the
absolute error is halved, which ensures linear convergence of the method [30]. Par-
ticularly, we obtain an approximation of the values within a fixed tolerance ϵ > 0
in a number n of iterations bounded by nϵ = ⌈log2( b−aϵ )⌉, with a =

∑
i∈N min(wi)

and b =
∑
i∈N max(wi).

6 Other Rational Verification Problems

E-Nash is, we believe, the most fundamental problem in the rational verification
framework, but it is not the only one. The two other key problems are A-Nash
and Non-emptiness. The former is the dual problem of E-Nash, which asks, given
a game G and a specification ϕ, whether ϕ is satisfied in all Nash equilibria of G.
The latter simply asks whether the game G has at least one Nash equilibrium, and
it can be thought of as the special case of E-Nash where the specification ϕ is any
tautology.

We can conclude from (the proofs of) the results presented so far, which are
summarised in Table 1, that while A-Nash for GR(1) games is also PSPACE and
FPT, respectively, in case of LTL and GR(1) specifications, for mp games the prob-
lem is, respectively, PSPACE and coNP, in each case. In addition, we can also
conclude that whereas Non-emptiness for GR(1) games is FPT, for mp games is
NP-complete. These results contrast with those when players’ goals are general
LTL formulae, where all problems are 2EXPTIME-complete since LTL synthesis,
which is 2EXPTIME-hard [28], can be encoded. These results also contrast with
those presented in [14], where it is shown that, in succinct model representations
given by iterated Boolean games or reactive modules, all problems in the ratio-
nal verification framework can be polynomially reduced to Non-emptiness, which
clearly cannot be the case here, unless the whole polynomial hierarchy collapses.

7 Concluding Remarks

We have presented improved complexity results for rational verification problems
in three different settings: in the analysis of response properties of reactive systems
modelled as multiagent systems; verification of mean-payoff games; and verifica-
tion of collective properties of multiagent systems through the analysis of social
welfare properties. The first scenario mostly concerns the verification of quali-
tative properties of reactive systems; the second the verification of quantitative
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properties; and the third the verification of “community” properties, as opposed
to individual properties of agents in a system. In the remainder of this article, we
discuss further the impact and relevance of our results in these three areas.

Reactive systems The logical analysis of reactive systems is typically carried out
using either linear temporal logics, such as LTL, or branching time temporal logics,
such as CTL and CTL∗. Such analysis may involve verifying that a temporal logic
property holds in a given system (model checking) or automatically constructing
the system from a temporal logic specification (automated synthesis). Rational ver-
ification subsumes both problems, and applies to systems modelled in a distributed
way as a collection of semi-autonomous agents (a multiagent system). Despite the
greater scope of rational verification with respect to both model checking and au-
tomated synthesis, previous work has shown that the overall complexity of rational
verification is typically not higher/worse than the combined complexity of the as-
sociated synthesis problem. This connection also transfers when considering goals
expressed in the GR(1) fragment of LTL, where an initial solution in 2EXPTIME
is reduced to complexities lying in the polynomial hierarchy. However, to do so,
careful attention must be paid to how the additional game-theoretic analysis that
rational verification entails must be done without blowing up the combined com-
putational complexity. This is particularly important since, in rational verification,
strategies for multiple agents must be synthesised, rather than a single model for
a reactive system.

Mean-Payoff games In the computer science literature, mean-payoff games have
been considered as a way of understanding the long-term behaviour (the average
performance) of a system—the most common setting is that of a two-player game
in which one of the players model the system and the other player models the
environment. From a game-theoretic point of view, these are two-player games,
which in a perfect information setting can be solved in NP ∪ coNP, thus without
a known polynomial time algorithm to solve them. In case of rational verification
with mean-payoff objectives, the problem is definitely harder, (unless P=NP, which
is unlikely). We have shown that if the principal has an LTL goal, the problem
matches the complexity of LTL model checking, a complexity gap that cannot
be avoided since LTL model checking is a particular case. But, even with GR(1)
specifications, the problem is very likely to be strictly harder than solving (two-
player perfect-information) mean-payoff games since we have shown that with
mean-payoff objectives the problem is NP-Complete.

Social Welfare While rational verification tends to privilege the preferences of
individual agents in a system, social welfare measures focus, instead, on what is
considered to be best for a society of agents. Because of this, our results regarding
social welfare outcomes may complement nicely the analysis performed in rational
verification as originally defined, where the perfromance of society as a whole was
irrelevant. We have shown that even in this scenario, better complexity results can
be achieved with respect to the complexity of the problem when only individual
preferences are considered, as in a Nash equilibrium. In the specific scenario that
we considered in the paper, we have shown that the problem is PSPACE-complete,
and therefore still efficient with respect to the space complexity of the problem.
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Future Work A limitation in adopting widely the use of rational verification
instead of other reasoning techniques is its combined complexity, which is closely
related to the complexity of associated automated synthesis problems. Our results
are important because they show that for several significant settings, rational ver-
ification can be done with polynomial space algorithms. These results are much
more attractive than in the general case, and hold out the hope of efficient prac-
tical tools (c.f. the Equilibrium Verification Environment (EVE) [20,21], a tool
for the automated analysis of temporal equilibrium properties). Further practical
implementations thus seem to be a natural step forward towards the deployment
of rational verification in more realistic scenarios.
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